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ABSTRACT

In this paper, some strong and∆-convergence results for mapping satisfy-
ing condition (E) in the setting of uniformly convex Busemann spaces are
proved. We are using newly introduced K∗ iteration process for approx-
imation of �xed point. We also give an example to show the e�ciency
of K∗ iteration process. Our results are the extension, improvement
and generalization of many known results in the literature of �xed point
theory in Busemann spaces.
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1. Introduction and preliminaries

Suppose that (X, d) is a metric space and x, y ∈ X. A geodesic path
joining x to y is a mapping γ : [a, b] ⊆ R → X such that γ(a) = x, γ(b) = y
and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [a, b]. In a particular, γ is an isometry
and d(x, y) = b− a.

A geodesic segment joining x and y in X is the image of a geodesic path in
X. The metric X is said to be a geodesic space, if every two points of X are
joined by a geodesic. Moreover, X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X.

Let γ : [a, b] → X be a path in a metric space X. We say that γ is an
a�nely reparametrized geodesic if either γ is a constant path or there exists a
geodesic path γ′ : [c, d]→ X such that γ = γ′ ◦Ψ where, Ψ : [a, b]→ [c, d] is a
unique a�ne homomorphism between the interval [a, b] and [c, d].

Suppose that X is a uniquely geodesic space and γ([a, b]) is a geodesic
segment joining x and y, and λ ∈ [0, 1]. Then z := γ((1 − λ)a + λb) will be a
unique point in γ([a, b]) satisfying d(z, x) = λd(x, y) and d(z, y) = (1− λ)d(x,
y).

In the sequel, the notation [x, y] is used for geodesic segment γ([a, b]) and z
is denoted by (1−λ)x⊕λy. A subset K ⊆ X is said to be geodesically convex
if K includes every geodesic segment joining any two of its points.

Let X be a geodesic metric space and f : X → R. We say that f is convex
if for every geodesic path γ : [a, b]→ X, the map f ◦ γ : [a, b]→ R is a convex.
It is known that if f : X → R is a convex function and g : f(X) → R is an
increasing convex function, then g ◦ f : X → R is convex.

Busemann (1948) developed a theory of non-positive curvature for path
metric spaces, based on a simple axiom of convexity of the distance function.

De�nition 1.1. The geodesic metric space (X, d) is said to be Busemann space,
if for any two a�nely reparametrized geodesices γ : [a, b]→ X and γ′ : [a′, b′]→
X, the map Dγ.γ′ : [a, b]× [a′, b′]→ R de�ned by

Dγ.γ′(t, t
′) = d(γ(h), γ′(t′))

is a convex; that is, the metric of Busemann space is convex.
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The statement are equivalent en route for this meaning which are listed
in (Papadopoulos, 2005, Proposition 8.1.2). Typical examples of Busemann
space are CAT (0) spaces, strictly convex Normed spaces, Minkowski spaces and
simply connected Riemannian manifolds of nonpositive sectional curvature.

Let (X, d) be a Busemann space, and x, y, z, w ∈ X and λ, λ′ ∈ [0, 1]. Then

(1) d(z, (1− λ)x⊕ λy) ≤ (1− λ)d(z, x) + λd(z, y),

(2) d((1− λ)x⊕ λy, (1− λ′)x⊕ λ′y) = |λ− λ′| d(x, y),

(3) (1− λ)x⊕ λy = λy ⊕ (1− λ)x,

(4) d((1− λ)x⊕ λz, ((1− λ)y ⊕ λw) ≤ (1− λ)d(x, y) + λd(z, w),

Hence Busemann spaces are also hyperbolic spaces, which were introduced
by Kohlenbach (2005).

De�nition 1.2. The Busemann space X is called uniformly convex if for any
r > 0 and ε ∈ (0, 2], there exists a map δ such that for every three points
a, x, y ∈ X,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ εr

 =⇒ d(
1

2
x⊕ 1

2
y, a) ≤ (1− δ)r

for all ε ∈ (0, 2] and inf{δ : r > 0} > 0.

A mapping η : (0,∞)×(0, 2]→ (0, 1] for which η(r, ε) := δ for a given r > 0
and ε ∈ (0, 2] is called a modulus of uniform convexity.

From now on, modulus of uniform convexity with a decreasing modulus with
respect to r (for a �xed ε) is called monotone modulus of uniform convexity.
The following lemma shows a property of uniformly convex Busemann spaces
which will be useful to obtain our main results.

Let K be a nonempty subset of a Banach space X. A mapping T : K → K
is called (a) contraction if there exists θ ∈ (0, 1) such that d(Tx, Ty) ≤ θd(x, y),
for all x, y ∈ K (b) nonexpansive if d(Tx, Ty) ≤ d(x, y), for all x, y ∈ K and (c)
quasi-nonexpansive if for all x ∈ K and q ∈ F (T ) we have d(Tx, q) ≤ d(x, q),
where F (T ) denotes the set {x ∈ X : T (x) = x}.
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A mapping T : K → K is said to satisfy condition (C) if for all x, y ∈ K,
we have

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y).

A mapping T : K → K is called Suzuki generalized nonexpansive mappings
if it satis�es condition (C). This class of mappings was introduced in Suzuki
(2008).

Suzuki (2008) showed that the condition (C) is weaker than nonexpansive-
ness and stronger than quasi nonexpansiveness. Recently, Khan et al. (2017)
established the existence and approximation results for SKC mappings in Buse-
mann spaces.

De�nition 1.3. Let µ ≥ 1. A mapping T : K → K is said to satisfy condition
(Eµ) if for all x, y ∈ K, we have

d(x, Ty) ≤ µd(x, Tx) + d(x, y).

We say that T satis�es condition (E), if T satis�es condition (Eµ) for some
µ ≥ 1.

Following is the example of mapping satisfying condition (E), but not sat-
isfying condition (C).

Example 1.1. De�ne a mapping T : K −→ K by

T (x, y) =

{
( 1+x

3 , y) if 0 ≤ x ≤ 1
3

(0, y) if 1
3 ≤ x ≤ 1,

where K = [0, 1]2 ⊂ X = (R2, d). Suppose that x = (x1, y1) and y = (x2, y2) ∈
K.

If x1 = 1
3 and x2 = 2

3 , then x = ( 1
3 , y1) and y = ( 2

3 , y2). Note that

d(x, T (x)) = d((x1, y1), T (x1, y1))

= d((
1

3
, y1), (

1 + x1
3

, y1))

= d((
1

3
, y1), (

1 + 1
3

3
, y1))

= d((
1

3
, y1), (

4

9
, y1))

=

(
(
1

3
− 4

9
)2 + (y1 − y1)2

) 1
2

=
1

9
.
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That is,
1

2
d(x, T (x)) =

1

18
.

Also

d(x, y) = d((x1, y1), (x2, y2))

= d

(
(
1

3
, y1), (

2

3
, y2)

)
=

(
(
1

3
− 2

3
)2 + (y1 − y2)2

) 1
2

=

(
1

9
+ (y1 − y2)2

) 1
2

.

Hence
1

2
d((x, T (x)) ≤ d(x, y).

Now

d(T (x), T (y)) = d(T (x1, y1), T (x2, y2))

= d

(
(
1 + x1

3
, y1), (0, y2)

)
= d

(
(
1 + 1

3

3
, y1), (0, y2)

)
= d

(
(
4

9
, y1), (0, y2)

)
=

(
(
4

9
− 0)2 + (y1 − y2)2

) 1
2

=

(
16

81
+ (y1 − y2)2

) 1
2

>

(
1

9
+ (y1 − y2)2

) 1
2

= d(x, y).

Thus
1

2
d(x, T (x)) ≤ d(x, y) ; d(T (x), T (y)) ≤ d(x, y).

So T does not satisfy condition (C).

We now verify that T satis�es condition (E). Consider the following cases:

1. x1 ≤ 1
3 and x2 ≤ 1

3 or x1 >
1
3 and x2 >

1
3 .
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(a): If x1 = 1
3 and x2 = 1

4 , then x = ( 1
3 , y1) and y = ( 1

4 , y2). Note that

d(x, y) = d((x1, y1), (x2, y2))

= d((
1

3
, y1), (

1

4
, y2))

= ((
1

3
− 1

4
)2 + (y1 − y2)2)

1
2

= (
1

144
+ (y1 − y2)2)

1
2 .

And

d(T (x), T (y)) = d(T (x1, y1), T (x2, y2))

= d((
1 + x1

3
, y1), (

1 + x2
3

, y2))

= d((
1 + 1

3

3
, y1), (

1 + 1
4

3
, y1))

= d((
4

9
, y1), (

5

12
, y2))

=

(
(
4

9
− 5

12
)2 + (y1 − y2)2

) 1
2

=

(
1

1296
+ (y1 − y2)2

) 1
2

.

Thus d(T (x), T (y)) ≤ d(x, y) implies that

d(x, T (y)) ≤ d(x, T (x)) + d(T (x), T (y))

≤ d(x, T (x)) + d(x, y).

(b) : If x1 = 2
3 and x2 = 1

2 , then x = ( 2
3 , y1) and y = ( 1

2 , y2). Clearly,

d(x, y) = d((x1, y1), (x2, y2))

= d((
2

3
, y1), (

1

2
, y2))

=

(
(
2

3
− 1

2
)2 + (y1 − y2)2

) 1
2

=

(
1

36
+ (y1 − y2)2

) 1
2

,

and

d(T (x), T (y)) = d(T (x1, y1), T (x2,y2))

= d((0, y1), (0, y2))

= ((0− 0)2 + (y1 − y2)2)
1
2 .
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Thus d(T (x), T (y)) ≤ d(x, y) implies that

d(x, T (y)) ≤ d(x, T (x)) + d(T (x), T (y))

≤ d(x, T (x)) + d(x, y).

2. In case, (x1 ≤ 1
3 and x2 >

1
3 ) or (x1 >

1
3 and x2 ≤ 1

3 )

(a) : If x1 = 1
3 and x2 = 1

2 then x = ( 1
3 , y1) and y = ( 1

2 , y2), we have

d(y, T (y)) = d((x2, y2), T (x2,y2))

= d((
1

2
, y2), (0, y2))

=

(
(
1

2
− 0)2 + (y2 − y2)2

) 1
2

=
1

2
,

and

d(x, T (x)) = d((
1

4
, y1), (

5

16
, y1))

=

(
(
1

3
− 4

9
)2 + (y1 − y1)2

) 1
2

=
1

9
.

Thus d(y, T (y)) =
1

2
<

2

3
= 6d(x, T (x)) and

d(x, T (y)) ≤ d(x, y) + d(y, T (y))

≤ d(x, y) + 6d(x, T (x)).

(b) : If x1 = 1
2 and x2 = 1

3 then x = ( 1
2 , y1) and y = ( 1

3 , y2) gives that

d(y, T (y)) = d((x2, y2), T (x2, y2))

= d((
1

3
, y2), (

1 + x2
3

, y2))

= d((
1

3
, y2), (

4

9
, y2))

=

(
(
1

3
− 4

9
)2 + (y2 − y2)2

) 1
2

=
1

9
,
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and

d(x, T (x)) = d(((x1, y1), T (x1, y1))

= d((
1

2
, y1), (0, y1))

=

(
(
1

2
− 0)2 + (y1 − y1)2

) 1
2

=
1

2
.

So d(y, T (y)) =
1

9
<

1

2
= d(x, T (x)) and

d(x, T (y)) ≤ d(x, y) + d(y, T (y))

≤ d(x, y) + d(x, T (x)).

Hence the mapping T satis�es the condition (E).

Lemma 1.1. If T is a mapping satisfying condition (E) and has a �xed point
then T is a quasi-nonexpansive mapping.

Let {xn} be a bounded sequence in a closed convex subset K of a Busemann
space X. For x ∈ X, set;

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius of {xn} relative to K is given by

r(K, {xn}) = inf{r(x, {xn}) : x ∈ K},

and the asymptotic center of {xn} relative to K is the set

A(K, {xn}) = {x ∈ K : r(x, {xn}) = r(K, {xn})}.

It is known that, in a Busemann space, A(K, {xn}) consists of exactly one
point.

Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) =
r({un}) for every subsequence {un} of {xn}.

In Busemann space it is known that every bounded sequence has a reg-
ular subsequence. Since in a Busemann space every regular sequence is a
∆−convergent, we see that every bounded sequence in X has a ∆−convergent
subsequence.
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Lemma 1.2. Lawaong and Panyanak (2010) Let X be a Busemann space and
x ∈ X, {tn} a sequence in [b, c], for some b, c ∈ (0, 1). If {xn}, and {yn} are
sequences in X satisfying

lim
n→∞

sup d(xn, x) ≤ r, lim
n→∞

sup d(yn, x) ≤ r

and lim
n→∞

sup d(tnxn ⊕ (1− tn)yn, x) = r,

for some r ≥ 0, then
lim
n→∞

d(xn, yn) = 0.

Lemma 1.3. Let X be a Busemann space, {xn} a bounded sequence in X and
K a subset of X. Then {xn} has a subsequence which is regular in K.

Lemma 1.4. (Dhompongsa et al., 2009, Proposition 2.1) If K is a closed
convex subset of a uniformly convex Busemann space X and {xn} is a bounded
sequence in K, then the asymptotic center of {xn} is in K.

De�nition 1.4. A sequence {xn} in Busemann space X is said to be ∆-
convergent if there exists some x ∈ X such that x is the unique asymptotic
center of {ux} for every subsequence {ux} of {xn}. In this case we write ∆-
limnxn = x and call x the ∆-lim of {xn}.

Lemma 1.5. Kirk and Panyanak (2008) Every bounded sequence in a complete
Busemann space always has a ∆-convergent subsequence.

Lemma 1.6. (Kirk and Panyanak, 2008, Proposition 3.7) Suppose that K
is closed convex subset of a Busemann space X and T : K → Y satis�es the
condition (E). Then the conditions {xn} ∆-converges to x and d(Txn, xn)→ 0,
imply that x ∈ K and Tx = x.

It is clear that any strong convergent sequence is ∆-convergent. Also, if
K is a closed convex subset of a Busemann space, then ∆-convergence of any
bounded sequence to x implies that xn → x (that is, the asymptotic center of
{xn} with respect to K is x).

2. The K∗ Iteration Process and Convergence

Results

The well-known Banach contraction theorem use Picard iteration process
for approximation of �xed point. By time, many iterative processes have been
developed to approximate �xed point of contraction type of mapping in a Buse-
mann type of ground spaces. Some of the other well-known iterative processes
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are Mann Mann (1953), Ishikawa Ishikawa (1974), S Agarwal et al. (2007),
Noor Noor (2000), Abbas Abbas and Nazir (2014), SP Phuengrattana and
Suantai (2011), S∗ Karahan and Ozdemir (2013), CR Chugh et al. (2012),
Normal-S Sahu and Petrusel (2011), Picard Mann Khan (2013), Thakur-New
Thakur et al. (2016), M Ullah and Arshad (2018) and so on. Recently Ullah
and Arshad Ullah and Arshad (2018), introduce new three steps iteration pro-
cess known as K∗ iteration process, which can be written in the language of
Busemann space as follows:

x0 ∈ K
zn = (1− βn)xn ⊕ βnTxn
yn = T ((1− αn)zn ⊕ αnTzn)
xn+1 = Tyn,

(1)

where n ≥ 0, {αn} and {βn} are real sequences in [0, 1]. We have the following
example to show the e�ciency of K∗ iteration process. We compare K∗ iter-
ation process with S Agarwal et al. (2007), Thakur-New Thakur et al. (2016)
and M Ullah and Arshad (2018) iteration processes.

Example 2.1. Let K = [0, 50] be endowed with absolute valued norm. De�ne

T : K → K by T (x) = (2x+ 3)
1
2 , for all x ∈ K. We see that, T is contraction

with FT = {3}. Take αn = 0.70 and βn = 0.65. The iterative values for
x1 = 3.5 are given in Table 1. Figure 1 shows the convergence graph. The
e�ciency of the K∗ iteration process is clear.

Now we prove some convergence results for mappings satisfying Condition
(E) using K∗ iteration process in the setting of Busemann spaces.

Theorem 2.1. Let K be a nonempty closed convex subset of a complete Buse-
mann space X, and let T : K → K be a mapping satisfying condition (E) with
F (T ) 6= ∅. For arbitrary chosen x0 ∈ K, let the sequence {xn} be generated by
(1), then lim

n→∞
d(xn, p) exists for any p ∈ F (T ).

Proof. Let p ∈ F (T ) and z ∈ K. Since T is a mapping satisfying condition
(E), so

d(p, Ty) ≤ µd(p, Tp) + d(p, y)

d(zn, p) = d(((1− βn)xn ⊕ βnTxn), p)

≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βn[µd(p, Tp) + d(xn, p]

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p). (2)
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Table 1: Sequences generated by K∗, M , Thakur − New and S iteration processes for mapping
T of Example 2.1.

K∗ M Thakur −New S

x1 3.5 3.5 3.5 3.5
x2 3.01633259231845 3.02873387531123 3.03753378464499 3.11313955067547
x3 3.00054793920171 3.00169963610076 3.00289847467759 3.02611511985139
x4 3.00001839935499 3.00010070825475 3.00022432199869 3.00605599221187
x5 3.00000061785423 3.00000596785823 3.00001736393623 3.00140587685381
x6 3.0000000207477 3.00000035365072 3.00000134409580 3.00032645109197
x7 3.00000000069671 3.00000002095708 3.00000010404296 3.00007580786309
x8 3.0000000000234 3.0000000012419 3.00000000805370 3.00001760419844
x9 3.00000000000079 3.00000000007359 3.00000000062342 3.00000408808220
x10 3.00000000000003 3.00000000000436 3.00000000004826 3.00000094934332
x11 3 3.00000000000026 3.00000000000374 3.00000022045861
x12 3 3.00000000000002 3.00000000000029 3.00000005119539
x13 3 3 3.00000000000002 3.00000001188871
x14 3 3 3 3.00000000276082
x15 3 3 3 3.00000000064112

Figure 1: Convergence of K∗, M, Thakur-New and S iteration processes to the �xed point of the
mapping de�ne in Example 2.1 where x0 = 3.5.
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Using (2) we get

d(yn, p) = d((T (1− αn)zn ⊕ αnTzn), p)

≤ d(((1− αn)zn ⊕ αnTzn), p)

≤ (1− αn)d(zn, p) + αnd(Tzn, p)

≤ (1− αn)d(zn, p) + αn[µd(p, Tp) + d(zn, p)]

≤ (1− αn)d(xn, p) + αnd(zn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p). (3)

Similarly by using (3) we have

d(xn+1, p) = d(Tyn, p)

≤ µd(p, Tp) + d(yn, p)

≤ d(yn, p)

≤ d(xn, p). (4)

This implies that {d(xn, p)} is bounded and non-increasing for all p ∈ F (T ).
Hence lim

n→∞
d(xn, p) exists, as required.

Theorem 2.2. Let K be a nonempty closed convex subset of a complete Buse-
mann space X, and let T : K → K be a mapping satisfying condition (E).
For arbitrary chosen x0 ∈ K, let the sequence {xn} be generated by (1) for all
n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some
a, b with 0 < a ≤ b < 1. Then F (T ) 6= ∅ if and only if {xn} is bounded and
lim
n→∞

d(Txn, xn) = 0.

Proof. Suppose F (T ) 6= ∅ and let p ∈ F (T ). Then, by Theorem 2.1 , lim
n→∞

d(xn, p)

exists and {xn} is bounded. Put

lim
n→∞

d(xn, p) = r. (5)

From (2) and (5), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = r. (6)

By (3) we have
lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p) = r. (7)
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On the other hand by using (2), we have

d(xn+1, p) = d(Tyn, p)

≤ d(yn, p)

= d((T (1− αn)zn ⊕ αnTzn), p)

≤ d(((1− αn)zn ⊕ αnTzn), p)

≤ (1− αn)d(zn, p) + αnd(Tzn, p)

≤ (1− αn)d(zn, p) + αn[µd(Tp, p) + d(zn, p)]

≤ (1− αn)d(xn, p) + αnd(zn, p)

= d(xn, p)− αnd(xn, p) + αnd(zn, p).

This implies that

d(xn+1, p)− d(xn, p)

αn
≤ d(zn, p)− d(xn, p).

So

d(xn+1, p)− d(xn, p) ≤
d(xn+1, p)− d(xn, p)

αn
≤ d(zn, p)− d(xn, p),

implies that
d(xn+1, p) ≤ d(zn, p).

Therefore
r ≤ lim inf

n→∞
d(zn, p). (8)

By (6) and (8) we get

r = lim
n→∞

d(zn, p)

= lim
n→∞

d(((1− βn)xn + βnTxn), p)

= lim
n→∞

d(βn(Txn, p) + (1− βn)(xn, p)). (9)

From (5), (7), (9) and Lemma 1.2 we have that lim
n→∞

d(Txn, xn) = 0.
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Conversely, suppose that {xn} is bounded and lim
n→∞

d(Txn, xn) = 0. Then,

by Lemma 1.3, {xn} has a subsequence which is regular with respect to K. Let
{un} be a subsequence of {xn} such that AK(un) = x. Therefore,

lim sup
n→∞

d(un, Tp) ≤ lim sup
n→∞

[µd(un, Tun) + d(un, x)] = lim sup
n→∞

d(un, x).

Thus the uqiueness of asymptotic center implies that x is a �xed point of
T and this completes the proof.

Now we are in the position to prove ∆-convergence theorem.

Theorem 2.3. Let K be a nonempty closed convex subset of a complete Buse-
mann space X, and let T : K → K be a mapping satisfying condition (E) with
F (T ) 6= ∅. Let {tn} and {sn} be sequences in [0, 1] so that {tn} ∈ [a, b] and
{sn} ∈ [0, b] or {tn} ∈ [a, 1] and {sn} ∈ [a, b] for some a, b with 0 < a ≤ b < 1.
From orbitrary x0 ∈ K, let the sequence {xn} generated by (1) for all n ≥ 1.
Then {xn} ∆-converges to a �xed point of T .

Proof. Since F (T ) 6= ∅, by Theorem 2.2 we have that {xn} is bounded and
lim
n→∞

d(Txn, xn) = 0. We now let ww{xn} :=
⋃
A({un}) where the union is

taken over all subsequences {un} of {xn}. We claim that ww{xn} ⊂ F (T ). Let
p ∈ ww{xn}, then there exists a subsequence {un} of {xn} such that A({un})
= {p}. By Lemma 1.4 and Lemma 1.5 there exists a subsequence {vn} of {un}
such that ∆-limn {vn} = p′ ∈ K. Since lim

n→∞
d(vn, T vn) = 0, then p′ ∈ F (T )

by Lemma 1.6. We claim that p = p′. Suppose not, since T is a mapping
satisfying condition (E) and p′ ∈ F (T ), limn d(xn, p

′) exists by Theorem 2.1.
Then by uniqueness of asymptotic centers,

lim
n→∞

supd(vn, p
′) < lim

n→∞
supd(vn, p)

≤ lim
n→∞

supd(un, p)

< lim
n→∞

supd(un, p
′)

= lim
n→∞

supd(xn, p
′)

= lim
n→∞

supd(vn, p
′)

a contradiction, and hence p = p′ ∈ F (T ). To show that {xn} ∆-converges to
a �xed point of T , it is su�ces to show that ww{xn} consists of exactly one
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point. Let {un} be a subsequence of {xn}. By Lemma 1.4 and Lemma 1.5
there exists a subsequence {vn} of {un} such that ∆-limn {vn} = p′ ∈ K. Let
A({un}) = {p} and A({xn}) = {p′′}. We have seen that c ∈ F (T ). We can
complete the proof by showing that p′′ = p′. Suppose not, since {d(xn, p

′)} is
convergent, then by the uniqueness of asymptotic centers,

lim
n→∞

supd(vn, p
′) < lim

n→∞
supd(vn, p

′′)

≤ lim
n→∞

supd(xn, p
′′)

< lim
n→∞

supd(xn, p
′)

= lim
n→∞

supd(vn, p
′)

a contradiction, and hence the conclusion follows.

Next we prove the strong convergence theorem.

Theorem 2.4. Let K be a nonempty compact convex subset of a Busemann
space X, and let T : K → K be a mapping satisfying condition (E) such that
F (T ) 6= ∅. For arbitrary chosen x0 ∈ K, let the sequence {xn} be generated by
(1) for all n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b]
for some a, b with 0 < a ≤ b < 1. Then {xn} converges strongly to a �xed point
of T .

Proof. By Theorems 2.2 and 2.3, {xn} is bounded and ∆-converges to x ∈
F (T ). Suppose on the contrary that {xn} does not converge strongly to x. By
the boundedly compact assumption, passing to subsequences if necessary, we
may assume that there exists x′ ∈ K with x′ 6= x such that {xn} converge
strongly to x′. Therefore,

lim
n→∞

d(xn, x
′) = 0 ≤ lim

n→∞
d(xn, x)

Since x is the unique asymptotic center of {xn}, it follows that x′ = x,
which is a contradiction.

Senter and Dotson (1974) introduced the notion of a mappings satisfying
condition (I) as.
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De�nition 2.1. A mapping T : K → K is said to satisfy condition (I), if
there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ K, where
d(x, F (T )) = infp∈F (T ) d(x, p)

Now we prove the strong convergence theorem using condition (I).

Theorem 2.5. Let K be a nonempty closed convex subset of a Busemann
space X, and let T : K → K be a mapping satisfying condition (E). For
arbitrary chosen x0 ∈ K, let the sequence {xn} be generated by (1) for all
n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some
a, b with 0 < a ≤ b < 1 such that F (T ) 6= ∅. If T satis�es condition (I), then
{xn} converges strongly to a �xed point of T .

Proof. By Theorem 2.1, we have lim
n→∞

d(xn, p) exists for all p ∈ F (T ) and so

lim
n→∞

d(xn, F (T )) exists. Assume that lim
n→∞

d(xn, p) = r for some r ≥ 0. If r = 0

then the result follows. Suppose r > 0, from the hypothesis and condition (I),

f(d(xn, F (T ))) ≤ d(Txn, xn). (10)

Since F (T ) 6= ∅, by Theorem 2.2, we have lim
n→∞

d(Txn, xn) = 0. So (10)

implies that
lim
n→∞

f(d(xn, F (T ))) = 0. (11)

Since f is a nondecreasing function, from (11) we have lim
n→∞

d(xn, F (T )) = 0.

Thus, we have a subsequence {xnk
} of {xn} and a sequence {yk} ⊂ F (T ) such

that

d(xnk
, yk) <

1

2k
for all k ∈ N.

So using (5), we get

d(xnk+1
, yk) ≤ d(xnk

, yk) <
1

2k
.

Hence

d(yk+1, yk) ≤ d(yk+1, xk+1) + d(xk+1, yk)

≤ 1

2k+1
+

1

2k

<
1

2k−1
→ 0, as k →∞.
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This shows that {yk} is a Cauchy sequence in F (T ) and so it converges to
a point p. Since F (T ) is closed, p ∈ F (T ) and then {xnk

} converges strongly
to p. Since lim

n→∞
d(xn, p) exists, we have that xn → p ∈ F (T ).

3. Conclusions

The extension of the linear version of �xed point results to nonlinear do-
mains has its own signi�cance. To achieve the objective of replacing a linear
domain with a nonlinear one, Takahashi (1970) introduced the notion of a con-
vex metric space and studied �xed point results of nonexpansive mappings in
this framework. This initiated the study of di�erent convexity structures on
a metric space. Here we extend a linear version of convergence results to the
�xed point of a mapping stisfying condition (E) for the newly intoduced K∗

iteration process Ullah and Arshad (2018) to nonlinear Busemann spaces.
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